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In our laboratory, a series of antimicrobial peptides have been developed, where the resulting 3D-
physicochemical properties are controlled by the placement of amino acids with well-defined properties
(hydrophobicity, charge density, electrostatic potential, and so on) at specific locations along the peptide
backbone. These peptides exhibited different in vitro activity against Staphylococcus aureus (SA) and
Mycobacterium ranae (MR) bacteria. We hypothesized that the differences in the biological activity is a
direct manifestation of different physicochemical interactions that occur between the peptides and the cell
membranes of the bacteria. 3D-QSAR analysis has shown that, within this series, specific physicochemical
properties are responsible for antibacterial activity and selectivity. There are five physicochemical properties
specific to the SA QSAR model, while five properties are specific to the MR QSAR model. These results
support the hypothesis that, for any particular AMP, organism selectivity and potency are controlled by the
chemical composition of the target cell membrane.

Introduction

Antimicrobial peptides (AMPsa) have evolved in almost every
class of living organisms, functioning as a host defense
mechanism against invading micro-organisms.1,2 These peptides
are generally small highly positively charged3 molecules with
well-defined hydrophobic and hydrophilic regions.4,5 AMPs may
be divided into two mechanistic super families as membrane-
disruptors and nonmembrane-disruptors.6,7 All membrane-
disruptors are believed to follow specific steps in the process
of interacting with and binding to the target cells or to model
membranes.8 The AMP is first attracted to the surface of the
membrane7 by the electrostatic interactions that occur between
the positively charged amino acids of the AMP and the
negatively charged phospholipids of the cell membrane.1,9,10

The following step involves the binding of the AMP to the
surface of the membrane.7 It is becoming more accepted in
the literature that it is the electrostatic interactions occurring
between the target cell’s membrane and the peptide that
determines organism potency and selectivity.1,2,4,6 It is well-
known that bacterial cells contain a high percentage of
negatively charged phospholipids, while mammalian cells
contain a much higher concentration of zwitterionic phos-
pholipids.11 Therefore, the variation in the chemical composi-
tion of the respective membranes is a rational explanation

for the observed selectivity of some AMPs for prokaryotic
versus eukaryotic cells.1,4

We have extended this rationale to explain the observed
differences in organism selectivity and potency for various
bacterial strains as well. It is well-known that the chemical
compositions of the membranes of different bacterial strains
vary.1,12,13 Because the chemical compositions of the membranes
of different bacterial strains vary greatly, the resulting physi-
cochemical surface properties presented by the membrane to
the external environment will therefore be different as well as
specific for each type of bacterial strain. Our guiding hypothesis
evolved from the above assertion, which in its simplest form
states the following: the 3D-physicochemical surface properties
of target cell membrane (bacterial or mammalian) interact with
the 3D-physicochemical surface properties of the approaching
AMP in a very specific way (via bioactive conformation), thus
defining the resulting organism selectivity and potency. If this
hypothesis is correct, then the interactions of a closely related
series of antimicrobial peptides against different bacterial strains
should be described by different physicochemical descriptors.

Materials and Methods

Cerius2 (C2), version 4.9,14 and InsightII, version 2000.1,
running on a Silicon Graphics Octane workstation under IRIX 6.5
operating system, were used for all of the modeling calculations
presented here. Gasteiger15 charges ClassII force field16 was used
for all of the computations using C2, and consistent valence force
field (CVFF) was used for all computations using InsightII. Unless
otherwise noted, default C2 and InsightII parameters were used.
For this investigation, 28 compounds (Table 1) previously synthe-
sized and tested in our laboratory17 were selected such that they
ensured a diversity of activity against Staphylococcus aureus ME/
GM/TC resistant (ATCC 33592) (SA) and Mycobacterium ranae
(ATCC 110; MR) bacteria.

Molecular Structure Building, Conformational Search, Clus-
ter Analysis and Descriptor Computation. Each peptide was
constructed in the Biopolymer module of InsightII, energy mini-
mized using steepest descent algorithm18 and subjected to a brief
(1000 cycles) MD simulation, followed by exhaustive minimization
to give the local minimum conformation of the peptide. The
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conformational search was carried out using Boltzmann jump or
Monte Carlo algorithm.19 The parameters for Boltzmann jump used
were as follows: number of conformations ) 2000; torsion window
) 120; number of perturbations ) 50; and temp ) 5000 K.
Conformations differing less than 1.0 Å (rmsd) and energy values
larger than 1000 kcal/mol were discarded. The conformations
were clustered using the root mean squares (rms) difference of
the torsion angles of the peptides20 to yield preliminary clusters
of 10–20, 20–30, 30–40, and 40–50 conformers per cluster. The
steps in the conformer clustering algorithm20 are as follows: all
of the conformers are sorted by energy. The lowest-energy
conformer is assigned to the first cluster and it becomes the
cluster nuclei. Next, all the conformers that have a rms difference
below the specified threshold value are placed in the first cluster.
The lowest-energy conformer of the remaining unclustered
conformers is placed in the second cluster as its cluster nuclei.
Again, all the conformers that have a rms difference below the
specified threshold value are placed in the second cluster. The
above two steps are repeated until all the conformers are placed
into clusters. The clusters with the best three-dimensional spatial
representations, as determined by visual inspection to be with
20–30 conformers for some and 30–40 conformers for the rest,
were selected. We used Tcl-based Cerius2 scripts21,22 to
automate the repetitive task of conformational searches and
cluster analyses. All the conformers of all the peptides were
aligned and added to a study table for descriptor computation
with default settings. The correlation matrix was computed for
all the descriptor values of all the conformers of all peptides to
obtain the cross correlation and correlation with bioactivity
coefficients.

Quasi-Multiway PLS Analyses. The partial least-squares (PLS)
method23 is used when the number of independent variables
(descriptors) greatly exceeds the number of experimental observa-
tions and there is colinearity among independent variables. The
following PLS parameters were used unless specified otherwise:
The complexity of the model was limited to a six-component
system, and the resulting descriptors were normalized to their mean
value. The definitions of the statistical terms used are as follows:

Equation 1 gives the conventional correlation coefficient or the
nonvalidated correlation coefficient r2

r2 ) 1- [(∑ (Y- Ypred)
2) ⁄ (∑ (Y - Ymean)

2)] (1)

where Y is the observed bioactivity, Ypred is the predicted bioactivity,
and Ymean is the mean bioactivity of all the training set compounds.

Equation 2 gives the cross-validation correlation coefficient q2.

q2 ) 1- [(∑ (Y- YCVpred)
2)/(∑ (Y- Ymean)

2)] (2)

where YCVpred is the cross-validated predicted bioactivity.
Equation 3 gives the predictive correlation coefficient r2

pred.

r2
pred ) (SD - PRES)/SD (3)

where SD is the sum of squared deviations between the bioactivity
of compounds in the test set and the mean bioactivity of the training
set compounds and PRES is the sum of the squared deviation
between the predicted and observed bioactivity for every test set
compound.

Prediction error sum of squares (PRESS) for the training set
compounds is given by equation 4.

PRESS ) ∑ (Y - Ypred)
2 (4)

The multiway-PLS method was first reported by Bro et al.24

Hasegawa et al.25 have reported the application of the multiway-
PLS method for 3D-QSAR model development of neonictinoid
insecticidal compounds. Each dimension of the multiway data
corresponded to the compounds in the training set, CoMFA field
variables, conformations, and alignments, respectively. The con-
formers and alignments that gave the best correlation to the observed
bioactivities were determined from the multiway-PLS solution. We
have mimicked the multiway-PLS analyses by performing several
sequential two-way PLS analyses on our data. We used a Tcl-based
Cerius2 script26 to automate the repetitive task of several PLS
analyses.

Computation of Electrostatic Surface Potential Maps. Elec-
trostatic surface potential maps for salient AMP conformers were

Table 1. Peptide Amino Acid Sequence and Antibacterial Activity against Staphylococcus aureus (SA) and Mycobacterium ranae (MR)a

C# amino acid sequence SA µMb MR µMb

1 NH2-KL-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-Oic-KR-NH2 10 30
2 Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-NH2 3 10
3 NH2-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-NH2 10 10
4 NH2-KL-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-NH2 30 3
5 Ac-F-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-KKKK-NH2 3 30
6 Ac-F-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-KKKKKK-NH2 3 3
7 Ac-Gaba-F-Tic-Oic-Gaba-K-Tic-Oic-Gaba-F-Tic-Oic-Gaba-K-Tic-KKKK-NH2 100 10
8 Ac-�Ala-F-Tic-Oic-�Ala-K-Tic-Oic-�Ala-F-Tic-Oic-�Ala-K-Tic-KKKK-NH2 10 1
9 Ac-Ahx-F-Tic-Oic-Ahx-K-Tic-Oic-Ahx-F-Tic-Oic-Ahx-K-Tic-KKKK-NH2 10 3
10 Ac-Gaba-F-Tic-Oic-Gaba-K-Tic-Oic-Gaba-F-Tic-Oic-Gaba-K-Tic-KKKKK-NH2 30 3
11 Ac-G-Tic-Oic-K-Tic-Oic-G-Tic-Oic-K-Tic-KKKK-NH2 10 3
12 Ac-GF-Oic-GK-Oic-GF-Oic-GKKKKK-NH2 106 100
13 Ac-GF-G-Oic-GK-G-Oic-GF-G-Oic-GK-G-KKKK-NH2 106 100
14 Ac-GF-Tic-GK-Tic-GF-Tic-GK-Tic-KKKK-NH2 106 30
15 Ac-GF-Tic-G-GK-Tic-G-GF-Tic-G-GK-Tic-KKKK-NH2 106 30
16 Ac-GF-F-Oic-GK-F-Oic-GF-F-Oic-GK-F-KKKK-NH2 10 10
17 Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKKK-NH2 3 3
18 Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-OOOO-NH2 10 10
19 Ac-G-Fpa-Tic-Oic-GK-Tic-Oic-G-Fpa-Tic-Oic-GK-Tic-KKKK-NH2 10 3
20 Ac-GF-Tic-Oic-GO-Tic-Oic-GF-Tic-Oic-GO-Tic-OOOO-NH2 3 10
21 Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-CONH-CH2-CH2-NH2 3 10
22 Ac-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-CONH-CH2-CH2-CH2-NH2 10 10
23 NH2-ELMNS-Tic-Oic-GL-Tic-Oic-GK-Tic-Oic-GL-Tic-Oic-GK-Tic-Oic-ELMNS-NH2 106 106

24 NH2-GKGL-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-Oic-GKR-NH2 10 NT
25 NH2-GKGL-Tic-Oic-GR-Tic-Oic-GF-Tic-Oic-GR-Tic-Oic-GF-Tic-Oic-GR-Tic-Oic-GKR-NH2 10 106

26 NH2-GKGL-Tic-Oic-GL-Tic-Oic-GK-Tic-Oic-GL-Tic-Oic-GK-Tic-Oic-GL-Tic-Oic-GLR-NH2 100 NT
27 NH2-GKGL-Tic-Oic-GK-Tic-Oic-GL-Tic-Oic-GK-Tic-Oic-GL-Tic-Oic-GK-Tic-Oic-GKR-NH2 10 NT
28 NH2-GKGL-Tic-Oic-FK-Tic-Oic-KF-Tic-Oic-FK-Tic-Oic-KF-Tic-Oic-FK-Tic-Oic-FKR-NH2 30 106

a C# ) cmpd #; Fpa ) 4-fluoro phenylalanine; Gaba ) γ-aminobutyric acid; Ahx ) ε-aminohexanoic acid; Ac ) acetyl; NT ) not tested. b All analogs
were screened in the concentration range of 0.1 µM to 100 µM; therefore, active compounds exhibited MIC of <100 µM. For computational purposes, all
inactive compounds were deemed to have an MIC of 1.0 M.
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computed as follows. The electrostatic potential for each conformer
was computed employing a grid with origin at its grid points,
resolution of 65 points per axis and solute extending to 80 Å. The
solute was defined with Gasteiger charges, VDW radii (van der
Waal radii), dielectric constant of 2.0, and point charge distribution.
The solvent dielectric constant was set to 80, the solvent radii was
set to 1.4 Å, the ionic strength was set to 0.145, and the ionic radii
was set to 2.0 Å. The molecular surfaces computed were Connolly
surfaces with solid display style, using the default atom radii scale
of 1.0 and probe radius of 1.4 Å. The surfaces were colored with
Delphi spectrum using the electrostatic potential grid as the coloring
method.

Results

The conformational search and cluster analysis data is
summarized in Supplementary Table 1. A total of 50 different
2D and 3D descriptors were calculated for all the conformers.
The list of descriptors is shown in Supporting Information, Table
2. The final selection of the significant descriptors is an
important first step in QSAR analysis. Several techniques for
descriptor selection to reduce dimensionality have been
reported,27,28 however, we employed the strategy reported by
Yao et al.29 The cross correlation matrix for the two models,
namely, Staphylococcus aureus (SA), and Mycobacterium ranae
(MR) was used for descriptor selection. The descriptors that
showed very poor correlation with bioactivity (r < 0.01) were
removed. Supporting Information, Table 3, shows the discarded
descriptors and their correlation coefficients with bioactivity for
the two models. The cross-correlation matrix showed that 33
descriptors exhibited very high cross-correlation coefficient
values (r > ∼0.9). Supporting Information, Table 4, summarizes
the highly collinear descriptor types, names, and their cross-
correlation coefficient values.

The final 22 and 21 descriptors for SA and MR QSAR models
were selected, employing the following method and rationale.
First, the descriptors were sorted based on their correlation
coefficient with bioactivity. Next, those descriptors with more
physical significance to offer mechanistic insight in the QSAR
information were retained and selections were made from the
highly collinear descriptors. For example for the SA model,
given a choice between Jurs-SASA, PMI-Mag, RadOfGyration,
Jurs-WNSA-1, and Jurs-WPSA-1, the Jurs-SASA was retained
because it provides information about the effect of the total
solvent accessible surface area on overall bioactivity. Table 2
shows the list of final descriptors used for the two QSAR
models.

Our novel bioactive conformer mining methodology mines
the clustered conformations to identify the conformer that most
closely correlates with bioactivity. Further, the use of the gradual
and stepwise refinement gives a steady enrichment of bioactive
conformers in each successive model generation. This meth-
odology has been demonstrated to deliver highly predictive
QSAR models for cyclic pentapeptide CXCR4 inhibitors21 and
insect repellents.30 The flowchart of the bioactive conformation
mining algorithm is depicted in Supporting Information, Figure 1.

The bioactive conformer mining method, over seven iterative
generations21,27 resulted in two conformers each for the 12
peptides (cmpd no. 1, 2, 5, 6, 17, 19, 20-22, 24, 25, and 27
for SA and cmpd. no. 4, 6, 8-11, and 17-22 for MR) and one
conformer for each the remaining 16 peptides. The details of
these seven generations of QSAR models are shown in
Supporting Information, Table 5. The best set of 12 conformers,
from the 24 conformers, could be selected in 4096 (212) ways.
A Tcl-based Cerius2 script26 was used to compute these 4096
eighth-generation models. The final SA and MR QSAR model

showed nonvalidated r2 of 0.988 and 0.997, leave-one-out cross-
validated r2 of 0.839 and 0.997, with PRESS values of 22.92
and 29.19, respectively. The QSAR equations defining the
activity against SA is given in eq 1 and against MR is given in
eq 2. The correlation plots of the predicted versus the observed
antibacterial activities of these two QSARs are given in Figure
1). The details of the QSAR models, such as the selected
conformers, predicted bioactivities, and residual prediction errors
are shown in Supporting Information, Tables 6 and 7 for SA
and MR QSAR models, respectively.

Internal validation (cross-validation) tests of the selected
QSAR models were performed at two levels. Both of the models
showed q2

LOO > 0.83 for the leave-one-out (LOO) cross-
validation tests. For the leave-10%-out or leave-three-out (L10O)
cross-validation tests, the SA model showed q2

L10O of 0.875,
whereas the MR model showed q2

L10O values of 0.537. It is
known that even with large number of observations and fewer
terms, the QSAR models can be poorly predictive.31 The
propensity for this chance correlation is assessed by the
randomization test, where the dependent variables (bioactivity)
are randomly reassigned to different compounds and a new
regression model is recomputed, with the process being repeated
several times. If the statistical data of these randomized models
are comparable to the computed QSAR model, then the QSAR
model is not predictive and the number of observations is
insufficient. We performed randomization tests of 99 trials, each
at 99% confidence level for SA and MR QSAR models. None
of the random r values were found to be larger than the
nonrandom r values for either the SA or the MR models. The
mean random r value for the SA model was 0.572 (r2 ) 0.327),
and for the MR model, the mean random r value was 0.617 (r2

) 0.380). This indicates that the SA and MR QSAR models
are not obtained by chance.

Discussion

The 17 physiochemical properties common to the SA and
MR QSAR models are shown in Table 2. The five physico-
chemical properties specific to the SA QSAR model are Jurs-
fractional-positive-surface-area-3 (Jurs-FPSA-3), Jurs-relative-

Table 2. Rank Ordering of the Physicochemical Properties Defining
Antibacterial Activity

physico-chemical
property

Staphylococcus
aureus

QSAR_DSP
physico-chemical

property

Mycobacterium
ranae

QSAR_DSP

Jurs-FPSA-1 29.347 density -30.784
density -16.01 Jurs-RASA 16.827
Jurs-TASA -14.762 Jurs-PPSA-1 -15.494
Jurs-PNSA-1 10.54 Jurs-TPSA 10.218
Jurs-RASA 7.886 Jurs-RPSA -5.444
Jurs-SASA 4.12 Hbond donor -3.905
Jurs-DPSA-2 3.093 Hbond acceptor 3.729
Jurs-PNSA-2 -2.911 Jurs-FPSA-1 -3.409
Jurs-RPSA -2.492 Fcharge 2.892
Rotlbonds -2.164 Jurs-PNSA-1 -1.244
Hbond acceptor 1.91 RadOfGyration 1.164
Jurs-FPSA-3 1.709 Rotlbonds -1.156
Fcharge -0.742 Apol 1.148
Jurs-RPCG -0.726 Jurs-PPSA-2 1.016
Jurs-PPSA-1 0.555 Jurs-PNSA-2 -0.632
Jurs-FNSA-3 -0.426 Jurs-RNCG 0.4
dipole-mag 0.162 dipole-mag 0.298
RadOfGyration -0.127 Jurs-FNSA-3 -0.127
Jurs-RPCS -0.126 AlogP 0.051
Hbond donor 0.113 conformer energy 0.037
Jurs-DPSA-3 0.053 Jurs-RPCG -0.024
AlogP -0.026 Jurs-DPSA-2 0
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positive-charge-surface-area (Jurs-RPCS), Jurs-differential-
positively-charged-surface-area-3 (Jurs-DPSA-3), Jurs-total-
solvent-accessible-surface-area (Jurs-SASA), and Jurs-total-
hydrophobic-surface-area (Jurs-TASA). While the five
physicochemical properties specific to the MR QSAR model
are sum-of-all-atomic-polarizabilities (Apol), conformer en-
ergy, Jurs-partial-positively-charged-surface-area-2 (Jurs-
PPSA-2), Jurs-relative-negative-charge (Jurs-RNCG), and
Jurs-total-polar-surface-area (Jurs-TPSA). The commonality
of physicochemical properties shows the minimal requirement
for activity against SA and MR. A comparison of relative
importance of these 10 descriptors is shown in Figure 3,
which clearly indicates that different physicochemical proper-
ties define the activity of these AMPs for the two bacterial
strains.

The physicochemical properties such as dipole-magnitude
(dipole-mag), formal charge (Fcharge), Jurs-fractional-negatively-
charged-surface-area (Jurs-FNSA-3), Jurs-relative-polar-surface-
area (Jurs-RPSA), Jurs-fractional-positive-surface-area-1 (Jurs-
FPSA-1), Jurs-fractional-negative-surface-area-1 (Jurs-PNSA-
1), Jurs-fractional-negative-surface-area-2 (Jurs-PNSA-2), Jurs-
partially-positive-surface-area-1 (Jurs-PPSA-1), and Jurs-relative-
positive-charge(Jurs-RPCG)indicatetheimportanceofelectrostatic

potential for the AMP bioactivity. While the physicochemical
properties, such as molecular density (density), number-of-H-
bond acceptors (H-bond acceptor), Jurs-relative-hydrophobic-
surface-area (Jurs-RASA), number-of-H-bond donors (H-bond
donor), molecular-radius-of-gyration (RadOfGyration), and
number-of-rotatable-bonds (Rotlbonds), indicate the significance
of the AMP molecular shape for bioactivity, the importance of
amphipathicity is alluded to by the physicochemical properties,
such as Jurs-RASA, Jurs-RPSA, and AlogP.

The QSAR equation shows the positive or negative contribu-
tion of various descriptors via the coefficients. However, the
contributions of various descriptors in relation to each other
can only be ascertained by taking into account the magnitude

Figure 1. The correlation plot of predicted vs observed antibacterial
activities of the two QSAR models.

Figure 2. Tic-Oic dipeptide turn inducing unit is shown in red. The
hydrophobic amino acid residues should exhibit hydrophobicity between
-1.0 and -3.0 on the octanol scale.34 Spacers A, B, and C are given
in purple. Amino acid residues used as spacers A, B, and C should
exhibit hydrophobicity between 1.2 and -0.75 on the octanol scale.
The cationic residues are shown in blue. The cationic amino acid
residues should exhibit hydrophobicity between 1.5 and 3.0 on the
octanol scale. The hydrophobic amino acid residues are shown in green
and should exhibit hydrophobicity between -1.0 and -3.0 on the
octanol scale.

Figure 3. 3D graph of the seven most important 3D-physicochemical
descriptor properties for each QSAR model. Descriptors for the SA
model are shown in light blue and the descriptors for MR model are
shown in purple. The x-axis indicates the individual descriptor
physicochemical properties: (1) Jurs-FPSA-1, (2) density, (3) Jurs-
TASA, (4) Jurs-PNSA-1, (5) Jurs-RASA, (6) Jurs-SASA, (7) Jurs-
DPSA-2, (8) Jurs-PPSA-1, (9) Jurs-TPSA, (10) Jurs-RPSA, (11) H-bond
donor, and (12) H-bonds acceptor. Only density and Jurs-RASA
descriptors are common to both of the QSAR models. Each QSAR
has five unique descriptors. The y-axis represents the descriptor
significance percentage (DSP), which represents the quantitative
contribution of any physicochemical property to the bioactivity of the
respective descriptor.
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of the descriptor values. We have coined the term descriptor
significance percentage (DSP) to compute the contribution of
each descriptor toward the overall bioactivity. The definition
of DSP is as follows: the descriptor mean value is calculated
as descriptor mean ) descriptor values of all training set
compounds/total number of compounds in the training set. The
product of the QSAR coefficients and the respective descriptor
mean value provides the contribution value of that descriptor
to the overall bioactivity (contribution to bioactivity or CtoBA).
Thus, CtoBA ) QSAR_coefficient × descriptor_mean_value.
The significance of CtoBA of any descriptor in relation to the
CtoBA of all the other descriptors is computed by dividing the
individual CtoBA by the sum total of all the CtoBA of all
descriptors. The percentage value of this quotient is termed as
“descriptor significance percentage or DSP”. Thus, DSP )
[(CtoBA × 100)/Σ abs(CtoBA)]. A positive DSP indicates that
the descriptor increases antibacterial activity. A negative DSP
indicates that the descriptor decreases antibacterial activity.

The DSP computation details for SA and MR QSAR models
are presented in Supporting Information, Tables 8 and 9, respec-
tively. The top six descriptors (DSP; Figure 3), namely, Jurs-
FPSA-1 (29.35%), density (-16.01%), Jurs-TASA (-14.76%),
Jurs-PNSA-1 (10.54%), Jurs-RASA (7.89%), and Jurs-SASA
(4.12%), account for 82% of the SA predicted activity. To
pictorially demonstrate the significance of electrostatics and sterics
in the SA activity, we selected five representative AMPs: 2 (3µM),
19 (10µM), 4 (30µM), 7 (100µM), and 14 (inactive) from the
various activity classes. The electrostatic surface potential (ESP)
map of these AMPs, colored using the Delphi spectrum, shown in
Figure 4, indicates that all AMPs have a distinct polar and nonpolar
face. The correlation of nonpolar surface area to bioactivity is
evident from the descriptors, such as Jurs-TASA with -14.76%
DSP contribution and Jurs-RASA with 7.89% DSP contribution.
The active AMPs (MIC < 100 µM) show more polar surface area
than the inactive analog 14. The high polar surface area correlation

with bioactivity is evident by the Jurs-FPSA-1, with 29.4% DSP
contribution and Jurs-PNSA-1 with 10.5% DSP contribution. The
shape of the AMPs is critical for bioactivity, as seen in Figure 4.
A loose helical shape is required for activity. A globular shape, as
that of 14, relates to loss of SA bioactivity. The shape correlation
to bioactivity is illustrated by the descriptor density, with -16.01%
DSP contribution and Jurs-SASA with 4.12% DSP contribution.

The significant descriptors accounting for 82% of MR
predicted activity are density (-30.78%), Jurs-RASA (16.83%),
Jurs-PPSA-1 (-15.49%), Jurs-TPSA (10.22%), Jurs-RPSA
(-5.44%), and H-bond donor (-3.91%). A demonstration of
the implication of electrostatics, sterics, hydrophobicity, and
hydrophilicity is shown in Figure 5 for four representative
AMPs, namely, 11 (3 µM), 18 (10 µM), 15 (30 µM), and 13
(100 µM). The correlation of the polar surface area to the MR
bioactivity is evident from the descriptors Jurs-PPSA-1 with
-15.5% DSP, Jurs-TPSA with 10.5% DSP contribution, and
Jurs-RPSA with -5.44% DSP contribution. The hydrophobicity
and hydrophilicity correlation with the MR bioactivity is shown
by the descriptors Jurs-RASA with 16.8% DSP contribution and
H-bond donor with -3.9% DSP. The contribution of shape to
MR predicted bioactivity comes from the descriptor density with
-30.78% DSP contribution. The two major structural variables
in this study are (1) the Tic-Oic dipeptide and (2) the spacers
A and B (refer Figure 2. The Tic-Oic dipeptide unit, which is
critical for antibacterial activity, exhibits the greatest effect on
the physicochemical properties via the following descriptors:
(A) electrostatic potential: dipole-mag, Jurs-FNSA-3, Jurs-
PNSA-1, Jurs-PNSA-2; (B) molecular shape: H-bond donor,
RadOfGyration, Rotlbonds; and (C) amphipathicity: Jurs-RPSA,
AlogP. As previously stated, the physicochemical properties,
such as dipole-mag, Fcharge, Jurs-FNSA-3, Jurs-RPSA, Jurs-
FPSA-1, Jurs-PNSA-1, Jurs-PNSA-2, Jurs-PPSA-1, and Jurs-
RPCG, indicate the importance of electrostatics for the AMP
bioactivity, while the physicochemical properties, such as
density, H-bond acceptor, Jurs-RASA, H-bond donor, RadOf-

Figure 4. The ESP maps of five representative bioactive conformers
used to generate 3D-QSAR for Staphylococcus aureus. For clarity, the
MIC against Staphylococcus aureus (ME/GM/TC resistant) bacteria is
given in parenthesis for each compound. Going from left to right,
compound 2 (3 µM), compound 19 (10 µM), compound 4 (30 µM),
compound 7 (100 µM), and compound 14 (in active). The top figure
shows the nonpolar faces of these conformers, while the bottom figure
shows the diametrically opposite polar faces of these conformers. Color
coding: blue indicates positive potential, red indicates negative potential,
and white indicates neutral potential.

Figure 5. The ESP maps of four representative bioactive conformers
used to generate 3D-QSAR for Mycobacterium ranae. For clarity, the
MIC against Mycobacterium ranae bacteria is given in parenthesis for
each compound. Going from left to right, compound 11 (3 µM),
compound 18 (10 µM), compound 15 (30 µM), and compound 13 (100
µM). The top figure shows the nonpolar faces of these conformers,
while the bottom figure shows the diametrically opposite polar faces
of these conformers. Color coding: blue indicates positive potential,
red indicates negative potential, and white indicates neutral potential.
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Gyration, and Rotlbonds, indicate the significance of the AMP
molecular shape for bioactivity. The importance of amphipath-
icity is alluded to by the physicochemical properties, such as
Jurs-RASA, Jurs-RPSA, and AlogP. The calculated values for
these descriptors for each of the salient compounds are given
in Table 3. Compound 2 was selected based on its broad
spectrum activity (activity against Staphylococcus aureus ME/
GM/TC resistant at 3 µM and Mycobacterium ranae at 10 µM
concentration coupled with relatively low hemolytic activity at
14%) as the reference compound for this investigation. In
addition, the % deviation (∆%) from the value for compound 2
and a % range (∆% range) deviation for the series of compounds
is also given. The effect of deleting either the Tic or Oic residue
on the conformational flexibility of the resulting peptide is
shown in Figure 6. The calculated “bioactive” conformers of
these analogs are extended and do not include a helical or �-turn
structure. Preliminary CD studies (data not shown) indicate that
in aqueous buffer these analogs exhibit characteristics of a
random coil conformer.

The effect of spacers A and B on the physicochemical
properties via various descriptors may be summarized as
follows: (A) electrostatic potential: dipole-mag, Jurs-FNSA-3,
Jurs-RPSA, Jurs-PNSA-1, Jurs-PNSA-2, Jurs-PPSA-1; (B)
molecular shape: Rotlbonds; (C) amphipathicity: Jurs-RPSA,
AlogP. The calculated values for these descriptors for each of
the salient compounds are given in Table 4. The statistically
significant differences are highlighted in bold face. The phys-
icochemical properties and the descriptors most affected by
spacers A and B are clearly evident in the analogs shown in
Table 4. The effect of varying the lengths of spacers A and B
on the conformational flexibility of the resulting peptide is
shown in Figure 7. The calculated “bioactive” conformers of
these analogs are a loose R-helical or �-turn containing
conformer (refer to Figures 6 and 7). Preliminary CD studies
(data not shown) indicate that in aqueous buffer these analogs
exhibit very strong characteristics of both �-turn and R-helical
components.

It is of interest to point out that the positive charge at both
the C- and N-terminus plays an effect on organism selectivity.
Analysis of the data indicates that compound 2 is significantly
more active against SA than compound 3, while the activity of
compounds 2 and 3 are identical against MR. Compound 3 has

a free amine and, thus, a positive charge at the N-terminus, while
in compound 2 the amine is acetylated. The presence of a
positive charge at the N-terminus reduces the activity from 3
µM (compound 2) to 10 µM (compound 3). Extending this logic
to include compound 4, which differs from compound 2 by a
having the free amine and a K residue (which introduces two
positive charges at the N-terminus), reduces the activity even

Table 3. Descriptors most Affected by the Tic-Oic Dipeptide Unit

cmpd 2 cmpd 12 cmpd 13 cmpd 14 cmpd 15

cmpd value ∆% value ∆% value ∆% value ∆% value ∆% ∆%

Electrostatic Potential
dipole-magnitude 269.60 0 251.73 -6.6 273.75 +1.5 81.00 -69.95 297.77 +10.45 80.4
F-charge 6.00 0 6.00 0 6.00 0 6.00 0 6.00 0 0
Jurs-FNSA-3 -0.05 0 -0.06 -20 -0.04 +20 -0.03 +40 -0.04 +20 60
Jurs-RPSA 0.27 0 0.33 +22.2 0.30 +11.1 0.26 -3.7 0.27 0 25.90
Jurs-FPSA-1 0.82 0 0.83 +1.2 0.82 0 0.81 -1.2 0.78 -4.87 6.07
Jurs-PNSA-1 576.30 0 446.76 -22.47 565.76 -1.8 503.61 -12.6 713.07 +23.7 46.17
Jurs-PNSA-2 -15950.51 0 -9781.01 +38.67 -8051.80 +49.52 -6499.05 +59.2 -10525.42 +34.0 59.20
Jurs-PPSA-1 2672.17 0 2225.44 -16.7 2513.86 -5.95 2136.09 -20.06 2459.00 -7.97 20.06
Jurs-RPCG 0.01 0 0.02 100 0.01 0 0.01 0 0.01 0 100

Molecular Shape
density 1.05 0 1.03 -1.9 1.05 0 1.06 +0.95 1.07 +1.9 3.80
H-bond acceptor 20.00 0 16.00 -20 20.00 0 17.00 -15 20.00 0 40
Jurs-RASA 0.73 0 0.67 -8.2 0.70 -4.1 0.74 +1.4 0.73 0 9.60
H-bond donor 32.00 0 32.00 0 36.00 +12.5 32.00 0 35.00 +9.4 12.50
Rad-of-gyration 14.55 0 13.47 -7.4 15.88 +9.1 10.18 -30.0 16.79 +15.39 45.39
Rotl-bonds 78.00 0 70.00 -10.25 82.00 +5.1 72.00 -7.69 81.00 +3.85 15.35

Amphipathicity
Jurs-RASA 0.73 0 0.67 -8.2 0.70 -4.1 0.74 +1.4 0.73 0 9.60
Jurs-RPSA 0.27 0 0.33 +22.2 0.30 +11.1 0.26 -3.7 0.27 0 +25.90
AlogP -3.25 0 -7.75 -138 -12.05 -270.7 -5.85 -80 -9.08 -179.3 270

Figure 6. Calculated “bioactive conformers” for the analogs with the
deletion of either the Tic or Oic residue indicate that these analogs are
extended and do not include a helical or �-turn structure. The Tic-Oic
dipeptide turn inducing unit is shown in green. The cationic residues
are shown in dark blue. Hydrophobic residues are shown in red. Spacers
A and B are shown in light blue.
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more to 30 µM. The effect of positive charge on bioactivity of
SA QSAR model is about 34% [predominately from Jurs-
FPSA-1 (29%), Jurs-DPSA-2 (3%) and Jurs-FPSA-3 (2%)],
whereas the effect of positive charge on the bioactivity of the
MR QSAR model is only about 19% [predominately from Jurs-
PPSA-1 (15%), Jurs-FPSA-1 (3%), and Jurs-PPSA-1 (1%)].
Thus, the positive charge affects the SA bioactivity twice as
much as it affects the MR bioactivity. This data and results
explain the difference in activity between compound 2 and
compound 3 with respect to SA and the identical activity of
the same compounds with respect to MR.

Increasing the number of Lys residues at the C-terminus
also plays a role in organism selectivity. Compound 5 has
four K residues at the C-terminus, with a MR activity of 30
µM and compound 6 has six K residues at the C-terminus,
with a MR activity of 3 µM. The same trend holds true for
compounds 7 and 10. Compound 7 has four K residues at
the C-terminus, with a MR activity of 10 µM and compound
10 has five K residues at the C-terminus with a MR activity
of 3 µM. As can be seen from Table 5, the physicochemical
properties Jurs-FPSA-1 and density cause an increase in the
SA bioactivity from compound 5 to compound 6, but
physicochemical properties Jurs-TASA and Jurs-PNSA-1
cause a decrease in the SA bioactivity from compound 5 to
compound 6. Thus, this cancellation effect is manifested in
the equal activity of compound 5 and compound 6 against
SA. As can be seen from Table 6, the physicochemical
properties density, Jurs-RASA, and Jurs-TPSA-1 cause an
increase in the MR bioactivity from compound 5 to compound
6, but physicochemical property Jurs-PPSA-1 causes only a
marginal decrease in the MR bioactivity from compound 5
to compound 6. Thus, the net effect is manifested in the
increased bioactivity of compound 6 as compared to that of

Table 4. Descriptors most Affected by Spacers A and B

cmpd 2 cmpd 7 cmpd 8 cmpd 9 cmpd 11

cmpd value ∆% value ∆% value ∆% value ∆% value ∆% ∆%

Electrostatic Potential
dipole-magnitude 269.596 0 222.841 -17.35 256.579 -4.82 220.357 -18.25 145.619 -45.99 45.99
F-charge 6.000 0 6.000 0 6.000 0 6.000 0 6.000 0 0
Jurs-FNSA-3 -0.051 0 -0.050 +1.96 -0.056 -9.8 -0.045 +11.76 -0.026 +9.0 +21.56
Jurs-RPSA 0.274 0 0.239 -12.77 0.268 -2.19 0.228 -16.79 0.210 -23.36 23.36
Jurs-FPSA-1 0.823 0 0.827 +0.49 0.805 -2.2 0.829 +0.73 0.834 +1.33 3.53
Jurs-PNSA-1 576.297 0 608.270 +5.55 704.141 +22.18 634.863 +10.16 528.652 -8.27 30.45
Jurs-PNSA-2 -15950.000 0 -17351.269 -8.78 -19787.484 -24.055 -18648.209 -16.91 -6814.498 -57.27 +51.27
Jurs-PPSA-1 2672.174 0 2911.683 +8.94 2899.114 +8.5 3086.010 +15.5 2661.015 -0.415 +15.92
Jurs-RPCG 0.013 0 0.013 0 0.013 0 0.012 0 0.013 0 0

Molecular Shape
density 1.054 0 1.043 -1.0 1.047 -0.66 1.031 -2.18 1.042 -1.13 2.18
H-bond acceptor 20.000 0 20.000 0 20.000 0 20.000 0 16.000 -20 20
Jurs-RASA 0.726 0 0.761 +4.8 0.732 +0.83 0.772 +6.33 0.790 +8.8 8.80
H-bond donor 32.000 0 32.000 0 32.000 0 32.000 0 28.000 -12.5 12.50
Rad-of-gyration 14.550 0 13.153 -9.6 14.228 -2.2 14.161 -2.67 11.799 -18.9 18.90
Rotl-bonds 78.000 0 86.000 +10.25 82.000 +5.13 94.000 +20.52 66.000 -15.38 35.90

Amphipathicity
Jurs-RASA 0.726 0 0.761 +4.8 0.732 +0.83 0.772 +6.33 0.790 +8.8 8.80
Jurs-RPSA 0.274 0 0.239 -12.77 0.268 -2.12 0.228 -16.79 0.210 -23.36 23.36
AlogP -3.252 0 -1.520 53.26 -2.527 22.3 1.650 49.3 1.054 67.56 67.56

Figure 7. The calculated “bioactive” conformers of the analogs
containing various length amino acid spacers in positions A and B
indicate that these compounds adopt a helical or �-turn conformation.
The Tic-Oic dipeptide turn inducing unit is shown in green. The
cationic residues are shown in dark blue. Hydrophobic residues are
shown in red. Spacers A and B are shown in light blue.

Table 5. Descriptors Relating Charge Density with SA Activity

percent
contribution +29% -16% -15% +11%

cmpd SA activity Jurs-FPSA-1 density Jurs-TASA Jurs-PNSA-1

5 3 0.834 1.042 2520 528
6 3 0.837 1.037 2761 564
effect on

bioactivity
increase

BA
increase

BA
decrease

BA
decrease

BA

Table 6. Descriptors Relating Charge Density with MR Activity

percent
contribution -30% +16% -15% +10%

cmpd MR activity density Jurs-RASA Jurs-PPSA-1 Jurs-TPSA-1

5 30 1.043 0.791 2668.13 670.01
6 3 1.037 0.794 2919.12 717.85
effect on

bioactivity
increase

BA
increase

BA
decrease

BA
increase

BA
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compound 5 against SA. In summary, even a small change,
such as addition of a single Lys, has an effect on all the
physicochemical properties of the peptide. The cumulative
effect of this difference in physicochemical properties results
in the large differences in observed bioactivity, as shown by
the example of compounds 5 and 6.

Recently, Meroueh et al.32 reported the three-dimensional
structure of bacterial cell wall peptidoglycan of SA, which
concurs with the previously reported observations that the
SA peptidoglycan outer layer is distinctly anionic.33 Thus,
for the electrostatic interactions occurring between the target
(SA) cell’s membrane and the peptide, the organism potency
is determined, and it is a necessary condition for any active
AMP to provide a complimentary polar face for the initial
electrostatic attraction. The ESP maps of the inner faces of
the hexagonal units of SA cell membrane (Figure 8a-c) show
that about half of the inner surface is distinctly polar, while
the opposite half is distinctly nonpolar. This figure illustrates
two major points: (1) the peptidoglycan presents a highly
charged polar face to the approaching AMP and (2) once
bound to the surface of the peptidoglycan presents an
amphipathic pore to the AMP, which is very complimentary
to its own amphipathic character. Also, it is known that the
SA outer cell membrane pore size measures ∼70–100 Å,32

and we have found that the largest dimension of these
bioactive AMPs is about 30–40 Å. Thus, one can rationally
speculate that this amphipathic pore may play a role in
transporting AMPs through the peptidoglycan layer to the
lipid bilayer of the membrane propelled by the complemen-
tarity of electrostatics between AMPs and the SA peptidogly-
can layer.

The molecular modeling results presented herein unequivo-
cally demonstrate that different physicochemical descriptors for
the same antimicrobial peptide define different antibacterial
activity against these two different bacterial strains. Further
more, these results coupled with the calculated electrostatic
surface potential maps for the peptidoglycan clearly indicate
that the physicochemical interactions that occur between AMP
membrane-disruptors and their target cells control organism
selectivity and potency. It is therefore critical, for future
development and understanding of AMPs, to include the effects

of these 3D physicochemical properties in any investigation of
AMP membrane/cell interactions.

Equations

SA QSAR Model is Described by the Following
Equation: 1. SA predicted activity ) [(-1.49592 × “Fcharge”)
+ (0.0098147 × “dipole-mag”) + (0.013993 × “Jurs-SASA”)
+ (0.00233 × “Jurs-PPSA-1”) + (0.187647 × “Jurs-PNSA-
1”) + (0.0021686 × “Jurs-PNSA-2”) + (0.00036919 × “Jurs-
DPSA-2”) + (0.0015025 × “Jurs-DPSA-3”) + (438.251 ×
“Jurs-FPSA-1”) + (267.258 × “Jurs-FPSA-3”) + (120.432 ×
“Jurs-FNSA-3”) - (715.316 × “Jurs-RPCG”) - (12.8649
× “Jurs-RPCS”) - (0.065752 × “Jurs-TASA”) - (125.513 ×
“Jurs-RPSA”) + (125.513 × “Jurs-RASA”) - (183.99
× “density”) + (1.03397 × “Hbond acceptor”) + (0.039473 ×
“Hbond donor”) - (0.306856 × “Rotlbonds”) + (0.114808 ×
“AlogP”) - (0.10004 × “RadOfGyration”) - 225.589].

MR QSAR Model is Described by the Following
Equation: 2. MR predicted activity ) [(-0.0083585 ×
“conformer energy”) + (2.05758 × “Fcharge”) + (5.3259e-05

× “Apol”) + (0.0061422 × “dipole-mag”) - (0.023941 ×
“Jurs-PPSA-1”) - (0.008252 × “Jurs-PNSA-1”) + (5.5381e-05

× “Jurs-PPSA-2”) + (0.00018566 × “Jurs-PNSA-2”) - (18.282
× “Jurs-FPSA-1”) + (13.321 * “Jurs-FNSA-3”) - (8.46841 ×
“Jurs-RPCG”) + (66.6262 × “Jurs-RNCG”) + (0.052889 ×
“Jurs-TPSA”) - (96.9761 × “Jurs-RPSA“) + (96.9761 × “Jurs-
RASA”) - (127.577 × “density”) + (0.768698 × “Hbond
acceptor”) - (0.498282 × “Hbond donor”) - (0.060764 ×
“Rotlbonds”) - (0.075759 × “AlogP”) + (0.337835 × “Rad-
OfGyration”) + 110.841].
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nonpolar opposite face. Color coding: blue indicates positive potential, red indicates negative potential, and white indicates neutral potential.
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